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Abstract
Levilactobacillus brevis NS2301G3, a strain isolated from fermented foods, was analyzed for 
its complete genome sequenceto identify genes related to probiotic characteristics and 
functional metabolic pathways. Genome annotation revealed 2,789 protein-coding 
sequences, highlighting genes involved in carbohydrate metabolism, stress tolerance, and 
vitamin biosynthesis. Genes responsible for lactic acid production, antimicrobial peptide 
synthesis, and gamma-aminobutyric acid (GABA) synthesis were identified, emphasizing the 
potential applications of this strain in fermented food production and probiotic use. 
CRISPR-associated proteins, exopolysaccharide production genes, and stress response 
mechanisms further support its adaptability and beneficial characteristics, suggesting its 
potential as a valuable microbe for human health and food industry applications.
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Introduction

Fermented foods have long been recognized for their health benefits, with lactic acid 

bacteria (LAB) playing a crucial role in the fermentation process, contributing to the 

flavor, texture, and nutritional value of these foods [1]. Among LAB, Lactobacillus brevis 

is a significant species commonly found in various fermented products, such as kimchi, 

sauerkraut, and fermented beverages [2]. The ability of L. brevis to adapt to different 

environments and metabolize a wide range of substrates makes it an important 

microorganism for both food fermentation and potential probiotic applications [3]. 

Although L. brevis is not commonly used in fermented dairy products, recent studies 

have highlighted its potential as a starter culture in fermented milk applications due 

to its ability to produce gamma-aminobutyric acid (GABA), a bioactive compound with 

health-promoting properties, including stress reduction and blood pressure regulation 

[4]. Additionally, there are reports of its application in dairy fermentation processes as 

a complementary starter culture, contributing to both functional and sensory properties 

[5,6]. These studies suggest that L. brevis can play a dual role as a fermentative 

microorganism and a probiotic agent in dairy products. In this study, we analyzed the 

gene content and functional roles of L. brevis NS2301G3, a strain isolated from 

traditional fermented food, focusing on its contributions to carbohydrate metabolism, 

stress response, antimicrobial activity, and probiotic potential. The findings from this 

study highlight the versatility of this strain and its potential applications not only in 

traditional fermentation processes but also in the production of functional dairy 
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products and other health-promoting foods.

Materials and Methods

1. Kimchi sample collection and isolation of Lactobacillus

Home-made kimchi samples were homogenized in sterile saline and plated on MRS 

(pH 5.0) agar [7]. Plates were then incubated anaerobically 37℃ for 48–72 hours to allow 

for the growth of white colonies. Biochemical tests such as catalase test, Gram staining, 

and 16S rRNA gene analysis (Macrogen, Korea) were performed to initially identify the 

isolated strain. The strain identified as L. brevis, exhibiting high acid and bile tolerance, 

was designated as NS2301G3, and its whole genome was analyzed.

2. Hybrid sequencing

Two separate genomic DNA libraries were prepared according to the requirements of 

the Illumina and Oxford Nanopore systems. A combination of long-read Nanopore 

GridION and short-read Illumina Nextseq2000 platforms was used to generate the 

complete genome sequence of L. brevis NS2301G2. For Illumina sequencing, the 

extracted genomic DNA was fragmented by sonication using a Covaris M220 (Covaris, 

USA). The sheared DNA were then used to prepare a WGS library with an average insert 

size of 450 bp using a TruSeq Nano DNA Sample Prep kit (Illumina, USA). The library 

was sequenced on an Illumina Nextseq2000 platform (Illumina) using the 300 bp 

paired-end sequencing mode. For Nanopore sequencing, a MinION sequencing library 

was prepared using the Nanopore Ligation Sequencing Kit (SQK-LSK114; Oxford 

Nanopore, UK). The library was sequenced with an R10.4.1 GridION flow cell (Flongle) 

for a 24 h run using MinKNOW with the default settings (MinKNOW core 5.0.0, Guppy 

6.0.6). 

3. Preassembly 

Illumina and Nanopore data were prepared for assembly, respectively with different 

options. Illumina Sequencing data were processed to remove low quality bases and 

adapter sequences with the optimized settings using Trimmomatic v0.39 (LEADING:10 

TRAILING:10 SLIDINGWINDOW:4:20 MINLEN:200) [8]. Subsequently, additional phiX 

control were removed from pre-assembled data [9,10]. Trimmed sequences were aligned 

against phiX genome with bowtie2 v2.3.5.1 with the default options and filtered out by 

samtools v1.9 [11]. Nanopore sequencing data was basecalled with guppy basecaller 

v3.1.5. NanoFilt v2.8.0 was used to filter obtained reads with average Phred quality 

score lower than 7 and length lower than 1,000 [12,13].

1) Genome assembly and annotation

Unicycler v0.4.8 was used to construct genome combined with Filtered NextSeq2000 

and GridION data. After, genome was annotated using Prokka v1.14.6 and their coding 

sequences (CDS) were identified [14].
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Results and Discussion

1. Genome structure and size

The basic genome statistics are provided in Table 1. The complete genome of L. 

brevis NS2301G3 consists of one circular chromosome (2,449,247 bp) with a GC content 

of 46.01%. According to the genomic results, L. brevis KL251 contains 2,412 CDSs, 67 

tRNAs, and 15 rRNAs (Fig. 1).

2. Gene content and functional annotation

The complete genome of L. brevis NS2301G3 was analyzed to determine the gene 

content and its functional roles. Genome annotation was performed using the RAST 

server and Prokka annotation tools, providing an in-depth overview of the functional 

Fig. 1. Circular chromosome map of Levilactobacillus brevis NS2301G3. CDS, coding sequences; 
tRNA, transfer RNA; rRNA, ribosomal RNA; tmRNA, transfer messenger RNA, GC, guanine and 
cytosine bases.

Table 1. Genomic features of Levilactobacillus brevis NS2301G3

Genomic features L. brevis NS2301G3 (chromosome)
Genome size (bp) 2,449,247
GC content (%) 46.01

rRNA genes 15
tRNA genes 67

CDS 2,412

GC, guanine and cytosine bases; rRNA, ribosomal RNA; tRNA, transfer RNA; CDS, coding sequences.
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repertoire of this strain. The annotation revealed a total of 2,789 protein-CDSs, 

including genes involved in various metabolic pathways, stress response mechanisms, 

and cell structure maintenance. The annotated genome also identified several genes 

encoding carbohydrate-active enzymes (CAZymes), suggesting a strong potential for 

carbohydrate metabolism, which aligns with the species’ role in fermented foods [15]. 

Notably, genes responsible for the synthesis of lactic acid, such as lactate dehydro-

genase (ldh), were prominently identified, emphasizing its importance in lactic acid 

fermentation [16]. Additionally, genes related to the catabolism of sugars such as 

glucose, fructose, and galactose were found, supporting the strain’s adaptability to 

diverse carbohydrate sources [17]. Key genes involved in carbohydrate metabolism 

include glucokinase (glk), phosphofructokinase (pfk), aldolase (ald ), beta-galactosidase 

(lacZ ), lactose permease (lacY ), and galactoside acetyltransferase (lacA) [18]. Functional 

annotation further revealed genes associated with stress tolerance, including those 

encoding heat shock proteins (DnaA, DnaN, DnaK, GroS, GroL) and oxidative stress 

response enzymes, which likely contribute to the strain's ability to survive and adapt 

to various environmental conditions, such as the acidic and anaerobic environment of 

fermented foods [19,20]. Additionally, genes involved in the biosynthesis of vitamins, 

such as riboflavin (ribBA, ribD) and folate (folT, folD, folC, folE, folK, folB), were 

detected, suggesting potential health-promoting properties [21,22]. In terms of antimi-

crobial properties, genes encoding CRISPR-associated proteins (casC, cas3), bacteriocins, 

and other antimicrobial peptides were found, indicating that L. brevis NS2301G3 may 

play a role in inhibiting pathogenic microorganisms in fermented food systems [23,24]. 

Genes associated with exopolysaccharide (EPS) production, such as pspA1, pspA2, pspB, 

were also identified, which are known to enhance the texture and viscosity of fermented 

products, thus contributing to the overall quality of the final product [25,26]. The 

genome also contains genes related to fatty acid metabolism regulation (fadR), arabinose 

metabolism repression (araR), and malolactic enzyme (mleS ), highlighting its versatility 

in metabolizing various substrates [27,28]. Genes involved in glutathione biosynthesis 

(gshAB), associated with antioxidant functions, were detected, further supporting the 

strain’s stress tolerance [29,30]. Additionally, genes related to the GABA pathway were 

identified, including glutamate/GABA antiporter (gadC ), glutamate decarboxylase (gadB), 

succinic semialdehyde dehydrogenase (gabD1), glutamate-tRNA ligase (gltX ), and 

proton/sodium-glutamate symporter (gltT ), suggesting the strain’s potential in GABA 

production, which is linked to health benefits such as stress reduction [31–33]. The 

presence of mobile genetic elements, including transposases and prophage sequences, 

was also noted, which may suggest genomic plasticity and the ability to acquire new 

traits through horizontal gene transfer [34]. This feature could provide an adaptive 

advantage in diverse ecological niches. Genes related to cell wall and mucosal adhesion, 

such as Eno, Eno2, LDH1, LDH2, LDH3, were also detected, which are likely important 

for the strain’s ability to interact with the host environment, contributing to its potential 

probiotic effects [35,36]. Overall, the gene content and functional annotation of L. 

brevis NS2301G3 reveal a versatile metabolic capacity, stress tolerance, and potential 

probiotic properties, supporting its application in fermented food production and its 
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potential as a beneficial microbe for human health.
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