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Abstract
The conventional methods for detecting Campylobacter generally take more than four days, 
and polymerase chain reaction (PCR) assays typically require additional instruments to 
determine the results. Accordingly, there is a need for simpler, more rapid detection 
methods that can be used to accurately determine the presence or absence of Campylo-
bacter in chicken or environmental samples. As a general strategy, the application of gold 
nanoparticles (AuNPs) in colorimetric biosensors has been suggested to detect Campylo-
bacter species in chicken carcasses and feces. In this regard, PCR has been utilized to 
amplify the target gene, and thiolated PCR products are obtained to enhance the sensitivity 
of the colloidal AuNP biosensor. Following the mixing of colloid AuNPs with the PCR 
products, the thiolated PCR products bind to the surface of AuNPs, forming AuNP-PCR 
products. The thiolated PCR products are characterized by an abundant negative charge 
that enables the AuNPs to maintain a dispersed formation in response to electrostatic 
repulsion when these products adhere to the AuNPs. This platform enables the detection 
of a color differentiation in the AuNPs and does not require additional time or a 
pH-optimization step to facilitate adherence of the thiolated PCR products to the AuNPs. 
These findings thus indicate that this strategy could provide an efficient detection method 
based on the color differentiation of AuNPs with reduced experimentation time, cost, and 
labor. 
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Introduction

Campylobacteriosis is a foodborne disease that causes diarrhea with abdominal pain 

and in some cases, Guillaine-Barre syndrome, which results in pneumatic failure and 

serious damage to the nervous system [1]. According to the European Food Safety 

Authority and the European Center for Disease Prevention and Control, campylobac-

teriosis was ranked as the most common zoonosis in Europe in 2014, with 214,268 

confirmed cases [2]. Likewise, the number of reported cases of human campylobacte-

riosis was 246,307 in 2016, which represents 66.3 cases per 100,000 individuals [3]. The 

most-reported species causing campylobacteriosis in humans is Campylobacter jejuni 

and Campylobacter coli, the latter of which has been largely ignored despite the 
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considerable health damage it causes [4]. Contact with live poultry and consumption of 

raw poultry have been defined as the main routes of Campylobacter infection [4]. 

Therefore, new rapid detection methods to accurately determine the presence or 

absence of Campylobacter spp. in chicken or environmental samples are needed [1].

AuNPs were stable, maintaining a red color. When they aggregated, the stable state 

of AuNPs was interrupted, resulting in a color change to purple or blue. The main point 

was that AuNPs could be modified by thiolated polymerase chain reaction (PCR) 

products, which protected AuNPs from salt-induced aggregation [5,6]. Because of this 

attribute, we modified unique Campylobacter-specific primers including an unlabeled 

reverse primer and a thiol-labeled forward primer to amplify the target gene [7]. 

Therefore, thiol-labeled target gene sequence was obtained. After mixing AuNPs with 

thiolated PCR products, AuNPs were surrounded by a thick layer that consisted of 

dsDNA. Therefore, this structure tended to change color from red to blue [7]. To obtain 

a successful result, GNPs need a thick obstacle with plenty of negative charges to 

prevent their aggregation.

Recently, specific nanoparticles, including silver nanoparticles (AgNPs) and gold 

nanopartricles (AuNPs), have been widely used as components of new technologies to 

detect pathogens and hazardous materials using direct or indirect analytes, such as 

target DNAs, other molecules, or aptamers, which has been carried out in our previous 

research [8–10]. When various solutions change from dispersion to aggregation state, 

specific nanoparticles exhibit significant color change due to their unique optical 

properties, which can be observed using a UV-visible wave-based spectrophotometer 

or the naked eye [11,12].

Consequently, Campylobacter is well established as a major source of bacterial 

foodborne pathogens worldwide. The various symptoms of campylobacteriosis can 

range from mild to severe both in children and the elderly. This pathogen exists as a 

cytochrome oxidase-positive, hippurate hydrolase-positive, microaerophilic, curved 

gram-negative rod that exhibits corkscrew motility. It can infect and be transferred from 

the intestines of a number of wild and domestic animals, particularly avian species such 

as poultry. Hence, this review aims to elucidate and discuss the pathogenesis of 

Campylobacter spp. and to highlight the applicability of biofunctionalized nanoparticles 

for the rapid detection of foodborne pathogenic bacteria.

Campylobacter Virulence Factors 

Virulence mechanisms have not been specifically characterized for Campylobacter 

spp. due to the lack of pathogenic similarity between campylobacters and other 

pathogens [13]. Flagella-mediated motility, bacterial adsorption in the intestinal mucosa, 

invasive ability, and the possibility of toxin production have all been reported as 

potential virulence factors [13,14]. 

Additionally, limited information regarding this pathogen has confirmed that flagella 

are required for intestinal colonization [15]. Invasion causes cellular inflammation that 

subsequently results in the production of cytotoxins, and this followed by a reduction 

in the absorptive ability of the intestine. Based on this, Campylobacter are then able 



Campylobacter spp. Detected by Updated Technology 

https://www.ejmsb.org J Dairy Sci Biotechnol Vol. 42, No. 3｜79

to reach the intestinal tract. Moreover, due to the resistance of this pathogen to gastric 

acids and bile salts, disease severity may also be dependent upon the immune condition 

of the host [16].

Flagella

Motility, a process that increases under highly viscous conditions, is necessary for the 

colonization of the small intestine [17]. Additionally, the function of flagella under 

different chemotactic conditions is critical for bacterial survival in various ecological 

sites that are encountered within the gastrointestinal area [18].

The flagellum of C. coli consists of two homologous flagellins that include FlaA and 

FlaB. These are encoded by two flagellin genes that are arranged in tandem. The flaA 

gene is controlled by the promoter σ28, and the flaB gene is regulated by the dependent 

promoter σ54 [18]. The flaA gene is regarded as fundamental for the invasion of 

epithelium, as it is established that a mutation in this gene leads to a truncated flagellar 

filament composed of flaB that exhibits a severe reduction in its motility. Despite this, 

a mutation in flaB appears to possess no structural significance compared to the 

structure of normal flagella [17]. The flaA gene is responsible for the adherence and 

colonization of the gastrointestinal tract and for invasion of host cells, where it 

subsequently detains the immune response [18]. It is currently speculated that flagella 

possess another characteristic (the ability to secrete non-flagellar proteins) that may be 

involved in the observed virulence phenomenon [15]. C. jejuni possesses a polar 

flagellum composed of O-linked glycosylated flagellin, which is a two-component 

system composed of the sensor FlgS and the response regulator FlgR [13].

Chicken Related Campylobacter spp.

Chicken meat is a significant source of proteins, and it is rich in essential amino 

acids, vitamins, and minerals. Fleshy chicken contains more protein than does the same 

amount of fleshy roasted beef, and the prices of chicken meat are lower than those of 

beef or pork [19]. Moreover, chicken by-products are frequently consumed due to their 

low price, mild taste, and short preparation time. However, the consumption of chicken 

has resulted in numerous recent outbreaks of chronic campylobacteriosis worldwide in 

both industrialized and developing countries [20]. Most of these cases occur as a result 

of touching raw poultry, eating raw or uncooked poultry meat, or cross-contamination 

from raw to cooked foods [20,21]. According to an observational study in England and 

Wales, C. jejuni was reported to be responsible for more than 12-fold the number of 

cases of human campylobacteriosis compared to those caused by C. coli [22]. 

The intestinal tract of chickens can contain a large amount of Campylobacter spp., 

and during processing, the intestinal tract may rupture or leak and allow the contents 

can be transferred to the skin [23]. Campylobacter spp. remain in a liquid layer on the 

skin and become entrapped within the cervix [24]. The tenacity and survival of 

Campylobacter spp. Are both promoted by the appropriate microenvironment located 
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on the skin of chickens, and even under frozen conditions or storage at 4℃, 

Campylobacter spp. can remain in the chicken carcasses [24,25]. 

A study was performed to investigate the effect of temperature during different 

seasons on the survival of C. jejuni in poultry. Wills and Murray demonstrated that 

Campylobacter spp. represented a persistent concern in poultry, particularly during 

warm months (May through October) [26]. During this period, 87%–97% of the tested 

samples were positive for C. jejuni. The lowest number of positive samples was 

confirmed in December (7%) and January (33%) [26].

Application of Biofunctionalized Nanoparticles (NPs)

Nanoparticle technologies have been extensively used for effective and rapid 

detection of various microorganisms; however, there are a few limitations that can be 

mitigated or avoided completely by understanding the critical parameters involved in 

these reactions. This review addresses the primary parameters regarding the fusion 

technology of nanoparticles and the various biosynthesis methods and provides a 

reasonable categorization of the current approaches with particular focus on gold 

nanoparticles (AuNPs) and silver nanoparticles (AgNPs) (Figs. 1 and 2). 

The AgNP- and AuNP-based colorimetric assays can be very efficient and sensitive, 

particularly for biomolecule identification and the detection of foodborne pathogenic 

bacteria in environmental samples. In particular, this review highlights the ability to 

detect pathogens through their coordination with nanoparticle-stabilizing ligands. This 

review also presents various approaches that are based on label-free aptamers and PCR 

products to better understand their role as smart sensing devices. 

The term “Nanoparticle (NP)” defines any small object ranging in size from 1 to 100 

Fig. 1. Mechanism for the process of aggregation of GNP by sodium. Both aggregation and dispersion 
of GNP are shown (redrawn). Adapted from Jin et al. [37] with CC-BY-NC.
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nm that behaves as a unit in regard to its transport and properties. It is established that 

nanoparticle properties change as a function of particle size, and based on this, these 

particles can be classified according to their diameter. Thus, ultrafine particles (or NPs) 

are particles with diameters of between 1 and 100 nm, while fine particles possess 

diameters of between 100 and 2,500 nm. For tailored applications, NPs can be capped 

with a variety of anionic and cationic ligands that can range from displaceable small 

molecules to polymer coatings. The choice of capping ligand depends upon the type 

of NPs that are used, and these can range from conductive inks to biomedical tools [27]. 

Among the known nanoparticles, gold and silver NPs (AuNPs and AgNPs) have been 

widely studied due to their unique optical, electrical, and photothermal properties. 

AuNPs and AgNPs exhibit unique optical features in well-dispersed solutions, and these 

features are dependent upon their level of aggregation, a property that is primarily 

determined by their specific surface plasmon resonance (SPR) profiles [28]. Metal-noble 

NPs are of a small enough size to confine their electrons and produce quantum effects. 

This is a key parameter for naked-eye colorimetric sensing applications, as modifi-

cations of their surface charge are transformed into a visible color change. Furthermore, 

NPs also possess very high extinction coefficients that depend primarily upon their size, 

shape, and inter-particle distance. Such properties enable NPs to compete with analy-

tical techniques such as absorbance or fluorescence spectroscopy. Colorimetric-based 

assays have been developed based on exploiting the color changes that are associated 

with the aggregation of metal-noble NPs [29]. Based on their adaptability, high 

sensitivity, low cost, and versatility, AgNP- and AuNP-based assays have been used to 

detect metal ions, small molecules, proteins, DNA, and enzymes [27,30–33]. AuNPs are 

Fig. 2. Mechanism of an AgNPs based colorimetric sensor for Cu2+ and Mn2+ detection (redrawn). 



Hong et al.

82｜J Dairy Sci Biotechnol Vol. 42, No. 3 https://www.ejmsb.org

often used as sensing elements to develop sensitive, selective, simple, and label-free 

colorimetric assays [34]. Consequently, the use of NPs as detection agents could be 

considered as a type of “litmus test” for target molecules [35]. Analytical methods such 

as high-performance liquid chromatography, electrophoresis, voltammetry, and fluore-

scence spectroscopy are the preferred approaches for the detection of various macro-

molecules; however, sensitive, fast, and high-throughput screening methods are still 

required [27]. NP-based colorimetric methods are rapid and user-friendly detection 

approaches that can exploit various chemical mechanisms. For example, these methods 

can be used for the rapid detection of influenza viruses based on the binding between 

the influenza virus envelope protein hemagglutinin and sialic acid stabilized AuNPs or 

for high-throughput screening of endonuclease inhibitors [33,36]. 

In this review, colorimetric approaches that allow for the naked-eye detection of 

color changes through ultraviolet-visible (UV-Vis) absorption spectroscopy without 

fluorescence detection methods are addressed [37]. Accordingly, these methods have 

been subdivided according to the analytes and NP surface modifications and are not 

based on the NPs used, as the colorimetric performances of AgNPs or AuNPs are highly 

similar [38]. 

Characteristics and Morphology of Gold and Silver 

Nanoparticles (NPs)

The most commonly used methods for the synthesis of AgNPs and AuNPs involve the 

reduction of AgCl or AgNO3 and HAuCl4 with sodium citrate and sodium borohydride. 

According to a previous study, the AuNP mixture was boiled with vigorous stirring in 

a round-bottom flask fitted with a reflux condenser for approximately 10 min, and a 

color change from yellow to wine red was observed within seconds [39]. The AuNP 

solution concentration was calculated following Beer’s law and using the extinction 

coefficient of 2.7 × 108 M–1 cm–1 at λ 520 nm [40]. For AgNPs, 1% trisodium citrate was 

added to a 0.3 silver nitrate solution, and the mixture was stirred for 5 min. After the 

dropwise addition of 1 mM sodium borohydride solution in the dark, the resulting 

mixture was stirred at room temperature for 2 h. The bright yellow AgNPs were filtered 

through a Millipore syringe (0.45 nm) to remove the precipitate. NPs were then 

characterized using diffusion light scattering to calculate their hydrodynamic radius in 

solution or by transmission electron microscopy to describe their morphology. 

For colorimetric assays, AgNPs possess certain advantages over AuNPs. Specifically, 

AgNP extinction coefficients are higher than are those of AuNPs of the same average 

size; however, AuNPs are more popular. This could be explained by the observation that 

AgNP functionalization typically leads to their chemical degradation and, thereafter, the 

AgNP surface can be easily oxidized, thus reducing their stability [41]. Indeed, Mancuso 

et al. reported that AuNPs are stable for longer than 1 month at room temperature, 

while AgNPs are stable for only approximately two weeks [42]. This difference may be 

linked to the different reaction constants of thiolated gold and silver. The high 

extinction coefficients and distance-dependent optical properties of AuNPs account for 
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the high sensitivity of AuNP-based colorimetric assays. Moreover, color changes can be 

easily observed by the naked eye, and this makes these particles attractive for use in 

DNA-related colorimetric assays [34]. The kinetics of DNA adsorption by AgNPs are 

slower than are those of AuNPs, and they cannot be accelerated by adding salt at 

neutral pH. This unique property regarding the specific molecular recognition of 

DNA-related colorimetric assays accounts for the difficulty of attaching DNA to AgNPs 

at neutral pH [43].

Similarly, AgNPs are good candidates for use as optical sensors based on their ability 

to display distance-dependent optical properties [36]. Their stability can be improved 

by producing Ag/Au core-shell NPs that retain the Ag core optical properties. However, 

oligonucleotide-modified Ag/Au alloy particles are not as stable as are oligonucleotide- 

modified core-shell particles, as they irreversibly aggregate under comparable condi-

tions. Furthermore, nanoparticles such as nanorods, prisms, and bipyramids exhibit 

different SPR wavelengths [42]. Therefore, sensing platforms based on the optical 

properties of AuNPs in combination with the molecular recognition of ligands such as 

alkyl thiols, antibodies, nucleic acids, and proteins are active areas of research. Mirkin 

et al. developed aptamer-based colorimetric assays for macromolecules using more 

stable AuNPs, despite AgNPs exhibiting a greater extinction coefficient [44].

NP colloidal stability can be adjusted by modifying the surface charges that affect 

electrostatic stabilization, and NP aggregation can be induced through the loss (or 

screening) of surface charges. When AgNPs and AuNPs are exposed to light, they 

oscillate in the electromagnetic field of light. This induces a collective coherent 

oscillation of the conduction band electrons, thus resulting in SPR. The SPR band 

intensity and wavelength are dependent upon factors that affect the electron charge 

density on the particle surface. According to Mie’s theory, these factors include the 

metal type, the particle size, shape, structure, and composition, and the dielectric 

constant of the surrounding medium [45]. 

Thus, unmodified AuNPs are red, while AgNPs are blue or maroon due to their 

specific and size-dependent SPR absorption. The addition of salt to the reaction triggers 

electrostatic repulsion between negatively charged NPs and antiparticle changes, 

ultimately resulting in NP aggregation and subsequent specific color and wavelength 

changes [46]. Hence, by monitoring the changes in absorbance, it is possible to under-

stand the characteristics of the enhanced scattering effect in aggregated NPs compared 

to that of non-aggregated NPs [47]. Consequently, the band gap energies can also be 

used to improve the understanding of NP sensing and catalytic properties [48]. The SPR 

profile is characteristic of NP surface modifications induced by small molecules, metal 

ions, and bio-macromolecules [49].

Conclusion

The conventional method for detecting Campylobacter spp. requires a lot of 

experimental time, cost, and labor, and additional analysis through PCR is essential. 

Above all, a simple and rapid detection method for accurately determining the presence 
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of Campylobacter in environmental samples or chickens is urgently needed. Up to now, 

the method for detecting Campylobacter spp. in chicken carcasses and chicken feces 

using AuNPs in a colorimetric biosensor has been known. First, PCR products and 

colloidal AuNPs are mixed, and then the thiolated PCR products bind to the AuNP 

surface to form gold nanoparticle-PCR (GNP-PCR) products. This reaction is because 

the thiolated PCR products have abundant negative charges, so they not only attach well 

to the AuNPs, but also maintain a dispersed form under electrostatic repulsion. This 

method provides color differentiation of AuNPs, and has the advantage of not requiring 

additional time or pH optimization steps for the thiolated PCR products to attach to 

the AuNPs. Therefore, it is evaluated that this platform will provide an efficient 

detection method for various food poisoning bacteria.
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